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Keywords:
 Thalassemia is one of the most common single gene disorders worldwide. Nearly 80 to 90 million with minor
beta thalassemia and 60–70 thousand affected infants are born annually worldwide. A comprehensive search
on several databases including PubMed, InterScience, British Library Direct, and Science Direct was performed
extracting papers about mutation detection and frequency of beta thalassemia. All papers reporting on the mu-
tation frequency of beta thalassemia patientswere selected to analyze the frequency ofmutations in different re-
gions and various ethnicities. Mutations of 31,734 individuals were identified. Twenty commonmutations were
selected for further analysis. Genotype–phenotype correlation, interactome, and in silico analyses of the muta-
tions were performed using available bioinformatics tools. Secondary structure prediction was achieved for
two common mutations with online tools. The mutations were also common among the countries neighboring
Iran, which are responsible for 71% to 98% ofmutations. Computational analyses could be used in addition to seg-
regation and expression analysis to assess the extent of pathogenicity of the variant. The genetics of beta thalas-
semia in Iran is more extensively heterogeneous than in neighboring countries. Some common mutations have
arisen historically from Iran and moved to other populations due to population migrations. Also, due to genetic
drift, the frequencies of some mutations have increased in small populations.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Thalassemias are the most common monogenic disorders [1] in
many ethnic groups, due to mutations of beta/alpha hemoglobin chain
encoded by HBB/HBA genes. Thalassemia is not uniformly distributed;
the highest frequency is seen in certain geographic regions spanning
countries bordering the Mediterranean, parts of North and West
Africa, the Middle East, the Indian subcontinent, southern Far East, and
southeastern Asia, the so-called thalassemia belt [2,3]. Based on WHO
estimations, nearly 1.5% of the world population (i.e. 80 to 90 million)
are beta thalassemia minors (heterozygous state) and 60,000–70,000
affected infants are born annually worldwide [3–6]. The frequency of
alpha thalassemia carriers is also high around the world, distributed
majorly in tropical and subtropical regions. In 1925, Cooley and Lee de-
fined thalassemia as a severe form of anemia with splenomegaly and
bone changes [7]. This group of inherited hematological disorders is
characterized as early onset of anemia due to reduced synthesis of one
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or more globin chains [8]. Normal hemoglobins including Hb Portland
(ζ2γ2), Hb Gower 1 (ζ2ε2), Hb Gower 2 (α2ε2), HbF (α2γ2), HbA
(α2β2) and HbA2 (α2δ2) consist of tetramers of two subunits synthe-
sized during different developmental stages; adult hemoglobins are
HbA1 (α2β2) and HbA2 (α2δ2) [9]. Major hemoglobin contains two
pairs of polypeptide chains,α andβ [10]; genes regulating the synthesis
and structure of these globins are organized in two clusters on 16p and
11p, respectively [11–14]. The beta globin gene contains three exons,
which are separated by two introns or intervening sequences (IVS). He-
moglobin synthesis is controlled by the locus control region (LCR)
which consists of five DNase-hypersensitive sites that lie upstream of
β-globin genes [15,16].

Up to now, more than 800 variants have been described in the beta
globin gene (HBB) worldwide (MIM#141900; GenBank genomic refer-
ence sequenceNG_000007.3) to cause beta thalassemia [17–19] (http://
globin.bx.psu.edu/hbvar/menu.html). The HBB mutations are particu-
larly frequent in Sardinia (11%–34%), Sicily (10%), Greece (5%–15%),
and Iran (4%–10%) [20–23]. Two types of beta globin gene mutations
have been characterized including β0 (no β globin chain is synthesized)
and β+ (β-globin chains are partly produced) [24].

The majority of HBBmutations affect a single nucleotide (point mu-
tations). Mutations of different parts of HBB (e.g. promoter, intron,
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splice sites, and exons) can affect transcription, splicing, and translation
of the gene. A common set of mutations has been reported in various
ethnic groups [25–29]; i.e. different mutations may arise from various
cohorts, separately. For example, resistance against malaria may play a
role in the distribution ofHBBmutations; natural selection has operated
in heterozygotes of HBBmutations particularly HbS against Plasmodium
falciparum malaria. Furthermore, the migration of people may have a
main role in the genetic diversity of thalassemia. Studies have shown
that many of the mutations found in Lebanon have their origin from
Turkish, Iranian, Kurdish, Bulgarian, and Asian Indian cohorts [30,31].
A fewdeletions have been reported in theHBB gene; among14 reported
deletions of HBB gene, the 619 bp deletion is the most common.

One of the most effective methods for prevention of beta thalasse-
mia is carrier screening. For example, the Iranian national thalassemia
screening program (Supplementary Fig. S1, Supplementary Table S1)
has been established for more than ten years [32] in this region of the
world. This kind of preventive approach will improve health systems
in the Middle East. Here, we base a cohort study on the surveys per-
formed in Middle Eastern countries to find out about the distribution
of HBB gene mutations and their prevalence in the region. We extend
our study into in silico analysis of the frequent mutations to unravel
the pathogenicity of the variants. The confidence of the methods for
predicting the pathogenicity was evaluated based on the analysis of
the known mutations. This study also includes genotype–phenotype
correlation of frequent mutations to help physicians in their patients'
management and prenatal diagnostic studies. This data will be useful
for genetic counseling of beta thalassemia families.

2. Materials and methods

2.1. Search strategies

A PubMed database search was conducted to find published reports
of beta thalassemia mutations in Middle Eastern countries focusing on
the neighboring countries of Iran. The keywords are as follows: “muta-
tion”, “gene”, “beta globin”, and/or “beta thalassemia” and “population's
name such as Iran, Azerbaijan, Turkey, Iraq, Kuwait, Saudi Arabia, Qatar,
United Arab Emirate, Bahrain, Oman, Jordan, Pakistan”. Among these
countries, Iran is the largest country which has a national Thalassemia
Network Screening andGenetic Diagnosis Program in the region. There-
fore, a comprehensive search on PubMed database was performed,
extracting all papers on beta thalassemia in Iran; also, Scientific Infor-
mation Database (SID), Medlib, and Magiran were searched for Persian
papers. All studies were categorized based on health status of the stud-
ied subjects, carriers, and cases (thalassemic). Three criteria were con-
sidered to include the publications in the study: (1) status of patients
and/or carrier, (2) mutation frequencies in each group, and (3) compa-
rable molecular detection methods. Studies were excluded if the statis-
tics of affected patients and those with asymptomatic genetic traits
were mixed and were reported together. The following information
was collected from each relevant study: number of patients/carriers,
type and number of mutations, geographical location, ethnicity, and
year of publication.

2.2. Mutation data abstraction

A literature search of HBB gene mutations was performed on the
above-mentioned populations, to identify all the reported mutations
in the database.

2.3. Geographical and ethnical distribution of causal variants in Iran

Research data from Iranwere sorted to seven regions in the country:
Central, Southern, Eastern, Northern, North West, Western, and South
West regions.
2.4. Mutation selection

The number of traits/ patients and carriers was extracted from rele-
vant studies to calculate the mutation frequencies of patients and car-
riers in different populations. The most frequent mutations were
selected for further analysis. The frequently observed mutations in
Iranian subjects were rechecked in neighboring countries. Twenty com-
mon mutations among these geographical regions and populations
were chosen for in silico structural and functional analyses.

2.5. In silico analysis

The selected variantswere categorized into intronic, exonic, and reg-
ulatory mutations based on location of the mutations. Then, the exonic
mutations were categorized into missense, nonsense, and frameshift
(insertion/deletion [indels]) mutations based on functional effect of
the mutation. In this way, different software and servers were used for
analysis depending on the type of mutation (see following sections).

2.5.1. Multiple sequence alignment
A multiple sequence alignment was performed by a server named

Mutation at a Glance [33], to compare UniProt protein family members
(UniProtKB/Swiss-Prot P68871). In thisway, conserved domains of pro-
tein are distinguished among paralogs.

2.5.2. Structural and functional analysis
The protein sequence of beta globin (UniProtKB/Swiss-Prot P68871)

was compared using protein homology/analogy recognition engine
V2.0 (Phyre2) [34] to determine the structure and function of the vari-
ants in protein. The functional analysis was completed using CombFunc
tool [35]. Iterative threading assembly refinement (I-TASSER) server
was also applied for protein structure and function predictions [36].
Modeling was based on using LOMETS threading program. The func-
tional analysis was performed by COACH server [37].

2.5.3. Protein interaction network
STRING database version 10.0, a database of known and predicted

protein–protein interactions, was used to predict functional association
of HBB protein in network of proteins. The interaction includes physical
and functional associations derived from genomic context, high-
throughput experiments, co-expression, and previous knowledge [38].
Themolecular function of proteinswithin a cell describes theway a sys-
temworks. A dysfunctional gene in this systemmay interact with other
genes with new phenotypic expression.

2.5.4. SNP annotations

2.5.4.1. Missense, nonsense, and indel mutations. A series of available bio-
informatic tools were applied to assess the pathogenic effect of the com-
mon functional mutations. Sorting intolerant from tolerant (SIFT) [39],
polymorphismphenotyping (PolyPhen-2 v2.1) [40], nonsynonymous sin-
gle nucleotide polymorphism (nsSNPAnalyzer) [41], protein annotation
through evolutionary relationship (PANTHER) [42], screening for non-
acceptable polymorphisms (SNAP) [43], single nucleotide polymorphism
and gene ontology (SNP&GO) [44], andMutPred [45]were applied to pre-
dict the effects of SNPs changing residues in proteinswhichmay cause dif-
ferences in function. Combined annotation dependent depletion (CADD)
is a tool for checking the deleteriousness of single nucleotide variations
(SNV) and indel variants in the human genome [46]. MutationTaster
[47] and Variation Viewer (http://www.ncbi.nlm.nih.gov/variation/
view/) also predict the effect of nucleotide changes in a sequence.

2.5.4.2. Regulatory, splice, and intronic mutations. The effects of intronic
SNPs were determined using human splicing finder (HSF) (www.
umd.be/HSF/) [48]. HSF, a tool for predicting the effects of SNPs on splic-
ing signals, contains available matrices for auxiliary sequence
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prediction and binding sites of some ribonucleoproteins. It includes dif-
ferent algorithms such as RESCUE-ESE,ESE-Finder, MaxEntScan, and
FAS-ESS [49]. CADD was used for functional analysis SNV of intronic
and regulatory positions. MutationTaster and Variation Viewers were
used to assess the pathogenicity.

3. Results

3.1. Selected studies

Data from 43 articles includingminor, major, and intermedia thalas-
semia cases were gathered for analysis from Iran. A total of 14,293 cases
were enrolled in the study. A majority of the cases were among high-
risk families of B-thalassemia all around Iran. There was no specific
characterization criterion of the intermedia cases in the studied samples
and, subsequently, theywere included in different groups depending on
their genotypes.

In addition, 29 articles were included from other ethnicities and
populations in the region. Studies in Iranian populations were catego-
rized into affected cases (2104 individuals) and carriers/heterozygous
individuals (12,189) (Table 1, Supplementary Table S2); of these, 152
major cases from the southern region, 312 major cases from the north-
ern part, and 481major patients from the central region. Studies on the
western part of Iran showed 527 affected individual, and 632 affected
from the south-west regions. No affected patient was observed in the
studies from the east (Table 1, Supplementary Table S2). The major
andminor individuals were also investigated in other neighboring pop-
ulations (data not shown). Nearly, 16,583 cases were enrolled in the re-
ported studies.

3.2. Causal genetic variations among regional populations and subpopula-
tions of Iran

A total of ninety mutations were reported from the published stud-
ies in Iranian population from different geographical and ethnic groups.
In total, 16,397 alleles have been reported and 16% alleles had nomuta-
tion. A total of 4208 alleles (25.66%) were studied from major and
intermedia subjects. Among themutations in the majors, 46% had a fre-
quency of b0.05%, i.e. they are considered as rare variants. A total of
12,189 alleles (of 16,397) (74.34%) were studied in minors, and 69mu-
tationswere determined in theminor group; 27 of them (39.13%) had a
frequency less than 0.05% (Supplementary Table S2). With this in mind,
90 mutations may be distributed differently amongminors and majors.
Table 1
Geographical and ethnical distribution of studied minor and major beta thalassemia cases in th

Regions No. of carriers No. of
majors

Ethnicity

Central 1332 (including 642 couples) 481 Fars

Southern region 760 (including 365 couples) 152 Fars

Eastern regions 4731 (including 2190 couples) 0 Balooch and Sistani

Northern 2313 (including 354 couples) 312 Gilak, Fars

North West 0 179 Azeri

Western 303 (including 100 couples) 348 Kurd and Lur

South West 2750 (including 819 couples) 632 Lur and Arab

Total 12189 (including 4470 couples) 2104
A total of 30 of 90 mutations were frameshift, 25 splice and
intronic, 15 UTR and regulatory, 14 missense, and 6 nonsense muta-
tions. The types and frequencies of mutations in each geographic re-
gion are presented. The first twenty frequent mutations including
eight intronic, six frameshift, two missense, two nonsense, and two
regulatory mutations were chosen for further investigation (Supple-
mentary Table S2). These common mutations were examined in dif-
ferent neighboring populations (Table 2). The frequency values in our
patient cohort are ranked from most to least frequent. They are com-
pared to other reported studies in neighboring countries. The three
most frequent mutations are IVSI-5(G N C) (27.5%), IVSII-1(G N A)
(24.5%), and IVSI-110G N A (5.6%), respectively, in the Iranian popula-
tion (Fig. 1, Table 2). They account for more than 55% of the reported
beta thalassemia mutations.

IVSI-5(G N C) is responsible for 33.6% of mutations in minor pa-
tients (Supplementary Table S2; Fig. 1). The major phenotype of
beta thalassemia is prominent in intronic mutations, namely, IVSII-
1(G N A).

To specify the frequent mutations in seven geographical regions,
three common mutations are presented in neighboring countries (Fig.
2, Table 2). IVS-II-1(G N A) was determined in 28.2% alleles as the
frequent mutation in homozygotes (Fig. 1). This mutation showed the
highest frequency in the northern and central regions of Iran
(Table 1). Interestingly, the specified mutations in subpopulations
of Iran are also common among the neighboring counties (Table 1;
Fig. 2). For example, IVSII-1(G N A) (57.4%) is common in northern re-
gions of Iran as well as being one of the top frequent mutations in
Azerbaijan; although the highest frequent mutation is Fsc8 (−AA)
(29.4%) which accounts for 4% of the northern mutations in Iran
(Table 2 for comparison).

IVSI-110(G N A) accounts for about 40% of beta globin mutations in
Turkey, which is also common in Azerbaijan (12%). The most frequent
mutations in neighboring countries are as follows: IVS II-1(G N A) in
Iraq (19%), Kuwait (31%), and Saudi Arabia (16%); IVSI-5(G N C) in
Qatar (35%), UAE (56%), Oman (44%), and Pakistan (38%); and codon
39 in Saudi Arabia (17%), whereas IVSI-25 bp accounts for 35% of the
mutations in Bahrain (Table 2). Common mutations in Iraq and
Kuwait are more likely similar to the mutations in the western and
southern parts of Iran (Fig. 2). Moreover, IVSI-110(G N A) mutation is
also high in the south-west parts of Iran as in Saudi Arabia. Also, IVSI-
5(G N C) is high in this region as in Qatar and UAE. The most common
mutation (IVSI-25 bp) in Bahrain seems to be common in the south-
west region of Iran (Supplementary Table S2).
e Iranian population.

Common mutations Refs.

IVS-II-1 (G N A) 36.5%;
IVS I-110 (G N C) 9.1%; FSC 8/9(+G) 8.8%

[50]; [27]; [51]; [52]; [53];
[54]; [55]; [56]; [57]; [28]

IVS II-1 (G N A) 21.1%; IVSI-5(G N C) 18.8%;
IVSI-110(G N A) 8.6%

[58]; [59]; [28]; [60]; [61]; [62]

IVSI-5 (G N C) 76.1%;
FSC8/9(+G) 3.9%;
IVSII-1(G N A) 2.5%

[63]; [64]; [65]; [66]; [67]; [29]; [28]

IVS-II-I (G N A) 57.4%;
IVSI-5(G N A) 9.4%;
CD30(G N A) 6.3%

[68]; [69]; [70]; [71]; [72]; [68]

FSC8/9 21.2%;
IVSI-110 21.2%;
IVSII-1 (G N A) 19.6%

[73]; [74];

IVS-II-1 (G N A) 33.4%;
FSC8/9(+G) 14.3%;
FSC 36/37 (−T)8.3%

[75]; [76]; [77]; [78]; [79]; [80]; [81]

IVS-II-I (G b A)18.6%;
FSC36/37 (−T) 15.7%;
IVSI-110 11.1%

[82]; [26]; [83]; [84]; [85]; [86]; [87];
[88]; [28]



Table 2
Distribution of twenty common mutations in Iran and neighboring countries.

Mutation Origin Iran
(%)

Azerbaijan
(%)

Turkey
(%)

Iraq
(%)

Kuwait
(%)

Saudi Arabia
(%)

Qatar
(%)

UAE
(%)

Bahrain
(%)

Oman
(%)

Pakistan
(%)

Highest frequency based on HbVar

IVSI-5(G N C) Mediterranean 27.43 1.76 0.92 4.97 14.75 12.75 35.38 56.44 16.42 44.41 38.02 Bangladesh (60%); Indonesian (54.24%); UAE (53%)
IVS II-1 (G N A) Mediterranean 24.49 17.06 4.85 19.69 31.15 16.09 9.23 2.96 8.96 2.78 0.58 Iranian (26.47%); Kuwaiti (29%); Yemenite (26.67%)
IVS I-110(G N A) Middle East

(Mediterranean)
5.67 12.35 39.69 11.66 0.82 9.04 6.15 1.65 1.49 0.12 Greek Cypriot (79.86%); Turkish Cypriots (72.19%); Macedonian

(47.31%);
Greek (42.97%); Albania (42.36%)

Cd36/37(−T) Kurdish/Iranian 5.52 1.18 0.23 0.19 0.36 0.23 Azerbaijan (2%); Oman (1%); UAE (0.4%)
Fsc 8/9 Asian Indian 5.01 6.18 1.91 4.59 2.46 2.71 26.15 6.27 1.49 0.12 25.53 Pathan (49.05%); Pakistani (25.9%); Punjabi (12.88%); Iranian (11.03%)
IVS I-1 (G N A) Middle East 2.68 2.06 4.28 4.02 5.74 3.16 1.54 2.98 1.4 0.4 Spanish (31.79%); Hungarian (28.13%); Syria (17%); Lebanese (15%);

Greek (13.65%)
IVSI −25 bp Middle East 2.23 0.96 5.74 9.13 6.15 9.57 35.82 3.61 Bahrain (36%); UAE (8%); Kuwaiti (7.3%)
Fsc8 (−AA) Mediterranean 2.09 29.41 5.95 4.21 1.64 1.45 3.08 0.23 Russian (38.71%); Azerbaijan (19.2%); Croatian (11.36%)
Codon30 G N C Black; Asian Indian 1.92 0.59 0.38 0.66 0.47 2.8 Tunisian (2.6%); Pathan (0.95%); Algerian (0.9%); Pakistani (0.9%)
FSC44(−C) Kurdish 1.73 1.76 1.79 8.41 0.82 1.27 3.08 2.97 4.48 7.23 Oman (9.6%); Bahrain (4.5%); Tunisian (4.4%)
IVS I-6 (T N C) Mediterranean 1.54 4.18 7.16 12.43 7.38 3.34 0.12 Macedonian (18.56%); Azerbaijan (17.3%); Sicilian (16%); Turkish

(14.75%)
Codon39 (C N T) Middle East 1.34 1.76 4.16 5.54 5.74 17.18 1.54 3.3 23.88 1.17 0.1 Sardinian (95.73%); Italian (66.84%); Argentine (47.06%); French

(41.9%)
CD5(−CT) Mediterranean 1.26 0.29 2.89 7.46 1.54 0.99 1.28 2.1 English (8.7%); Syria (8.5%); Pathan (7.62%); Bulgarian (7.11%)
IVS-I-5 (G N A) Asian India 1.22 0.29 Spanish (0.93%); Tunisian (0.9%); Algerian (0.9%)
Cd 15 (G N A)
(TGG-TGA)

Asian Indian 1.15 1.76 0.06 3.08 0.99 1.49 0.12 1.44 Portuguese (11.79%); Russian (6.45%); Japanese (0.95%)

IVS-II-745, G N C Mediterranean 1 0.88 3.87 1.34 0.36 Jordan (12%); Sicilian (6.16%); Turkish Cypriots (6.07%)
FSC-22-24 (−AAGT
TGG)

Turkish 0.95 0.29 0.29 0.19 Turk

−88 (C N A) African/ Indian 0.8 0.59 0.06 1.49 0.23 0.1 Bahrain (1.5%); Egyptian (0.6%); Iranian (0.3%)
−28 A N C Kurdish 0.5 0.59 0.12 0.57 0.82 Azerbaijan (1%); Turkish (0.24%)
CD6 (A N T)(HbS) Africa, India, the Middle

East
0.5 0.88 2.43 4.16 25.29 0.23 American Indian

Black
Total mutations 20 19 17 16 11 14 10 10 10 16 10
Total 88.92 83.86 80.66 86.61 77.06 82.54 95.38 85.8 98.5 88.81 71.3
Refs Present study [89]

[90]
[91]

[92]
[93]
[94]
[95]
[96]

[97]
[98]
[99]
[100]
[101]

[102]
[103]

[104]
[105]
[106]
[107]
[108]

[109] [110]
[111]

[112] [113]
[114]
[115]

[116]
[117]
[118]
[119]
[120]
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Fig. 1. Frequencies of twenty common mutations among thalassemia minors and majors in Iranian population. A total of 12,189 alleles account for minor thalassemia and 4208 alleles
include major thalassemia.
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The twenty common mutations were responsible for 89% of all mu-
tant alleles in Iran (Table 2); 10 of thesemutationswere responsible for
98.5% and 71.3% of mutant alleles in Bahrain and Pakistan, respectively.
A panel of commonmutations in this region of theworldwould behelp-
ful for screening programs.
3.3. Genotype–phenotype correlation

Genotype–phenotype analysis of patients and heterozygous/carriers
of the common mutation was performed based on the available data
(data from Iran). The top ranked mutations consist of intronic muta-
tions. Among the homozygous mutations, IVSII-1 was common (28%)
among the major cases in Iran. Among homozygous frameshift muta-
tions, c.112delT (cd36/37(−T)) showed the highest ranked value (8%)
Fig. 2. Distribution of three common mutations of beta globin in different regions of Iran. Ce
Hormozgan; Eastern regions: Sistan va Balouchestan, Khorasan; Northern: Gilan, Mazandaran
Lorestan, Hamadan, Ilam; Southwest: Khuzestan, KohkiluyehVaBuyer ahmadi, Bushehr. The nu
among the major thalassemias. The heterozygous cases show minor
thalassemia with highest value (34%) in IVSI-5. Also, IVSI-5 is about
10% among majors (Fig. 1).
3.4. In silico analysis

We focus on missense and nonsense variants among the common
variants, p.E7V (cd 6 A N T), p.W16X (cd15G N A), p.R31T (cd30G N C),
and p.Q40X (cd39C N T). Two nonsense mutations lead to truncated
protein. The structural and functional analyses of two missense muta-
tions were investigated in further sections. The frameshift (including
small insertions and small deletions)mutations cause truncated protein
and impaired functional product. Other mutations were analyzed with
different tools depending on the ability of servers (discussed below).
ntral: Isfahan, Tehran, Yazd, Semnan, Markazi, Qazvin; Southern region: Kerman, Fars,
, Golestan; Northwest: Azarbayjans, Ardabil, Zanjan; Western: Kurdestan, Kermanshah,
mbers in front of the mutations indicate the % of mutation in that region.

Image of &INS id=
Image of Fig. 1


Fig. 3. Protein alignment of HBB amino acid sequence among vertebrates. (A) Distribution ofmutations and neutral substitutions along the HBB protein. The degree of conservation is also
determined (shown in color range from 0 to 1.0). R31 is highly conserved for residual conservation which is close to 1 as in the diagram. (B) Multiple amino acid alignment of HBB family
adapted fromMutation at a Glance homepage (http://harrier.nagahama-i-bio.ac.jp/mutation/ataglance.cgi) andUniProt protein familymembers. R31 is a highly conserved residue among
other organisms; different orthologous and paralogousmembers are specified in the left side of the protein sequences. Missense (p.R31T) and nonsense (p.W16X and p.Q40X)mutations
as indicated in the red box show high conservation among different species but not at p.E7V position.
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3.4.1. Protein sequence alignment
p.E7V and p.R31T were the subjects of sequence alignment among

other species for conserved residues and the degree of conservation
for each amino acid was investigated (Fig. 3, A and B). Arginine at posi-
tion 31 (R31) is highly conserved (Fig. 3A); in addition, multiple align-
ment shows that Arg31 is also conserved among different organisms
(Fig. 3B). The degree of conservation at glutamic acid 7 (E7) is not as
conserved as R31 (Fig. 3A); multiple alignments of protein sequences
of different organisms also show lesser conservation in this position.
The nonsense mutations as p.W16X and p.Q40X are also positioned at
highly conserved regions (~1.0); therefore, a change in amino acid se-
quence may cause pathogenicity.

3.4.2. Structure prediction
Secondary structure prediction was achieved for p.E7V and p.R31T

with online tools. I-TASSER prediction is basically based on threading
model [36]. Secondary structure was determined as a helix structure
by I-TASSER server with high confidence value for p.E7V and p.R31T
which shows these two positions were not structurally changed due
to amino acid modification (Fig. 4); solvent accessibility of the given
amino acids was also predicted as illustrated, Arg at position 31 is less
buried in protein (more exposed) and the accessibility to solvent is
higher; though amino acid change to threonine at position 31 hadmod-
ified the solubility to 3 value (2 is the value in normal structure) which
means the amino acid is positionedmore within the protein. The acces-
sibility of protein was changed in p.R31T (Fig. 4B).

B-factor profile (BFP) value of E7 and R31 were 0.31 and−0.87, re-
spectively. BFP for position p.E7V has higher value (0.34) than the BFP
value of p.R31T (−0.83); p.R31T value was changed compared to nor-
mal amino acid sequence which defines that p.R31T is more stable in
the structure than p.E7V and this change may be more effective for
this position (Fig. 4B).

Threading template of the query protein was performed using
LOMETS threading program [121]. The top threading template predic-
tion for p.R31T was based on PDB 1fhjB (Aquomet hemoglobin-I of
the maned wolf—Chrysocyon brachyuru—identity 0.89; normalized Z-
score of the threading alignments = 2.48 and coverage = 0.99 [36,
122,123]. The top template for p.E7V is also 1fhjB (identity 0.89;
norm. Z-score = 2.49, coverage 0.99) (data not shown). The predicted
threading template of a normal sequence also based on 1fhjB—identity
0.90; normalized Z-score = 2.50 and coverage = 0.99—showed higher
Z-score in comparisonwith other sequence substitutions. The difference
between normal structure and p.E7V structure are less than p.R31T.

Top five final models of predicted secondary structures were listed
on I-TASSER with 3-D predicted tertiary structures (Fig. 4A). To note,
decoys from a large structural conformation models were generated to
simulate the final model based on pair-wise structure similarity of the
decoys (using SPICKER program). The confidence is measured by C-
score. For p.R31T the C-score = 1.25, estimated TM score = 0.89 ±
0.07 and RMSD = 2.3 ± 1.8 Å. For p.E7V the first model was indicated
with C-score = 1.26. C-score of higher value signifies a model with a
high confidence and vice versa [36,122,123]. TM-score value indicates
the similarity of the predicted structures to the native structure. Struc-
tural analogs of the predicted protein are investigated with structural
alignment program, TM-align. TM-align aligns the first model to the
PDB library models. The proposed model for p.E7V matched with PDB
1fhjB and 1dxtB with TM-score = 0.981. TM-score N 0.5 determined
the structure class/protein family of the predicted query protein struc-
ture. p.R31T model also matches the PDB 1fhjB with TM-score =
0.980 (data not shown). Therefore, because of structural similarity, the
model protein has similar functions; slight changes in the sequence
may slightly affect the function due to the position and binding sites
of the protein.

Phyre2 server predicted the structure based on template-based ho-
mology modeling and fold recognition [34]. The globin protein with
p.E7V andp.R31Twasmodeled based on themembers of globin-like su-
perfamily, named d2d5xb1 (crystal structure of carbonmonoxy horse
hemoglobin complexed with L35) with confidence score 100; identity
83% and coverage of 99%. As shown, there is a high secondary structure
prediction confidence score (red) at both positions (Fig. 5). The second
structure has structurally changed the order of amino acid sequences.
The alpha helix-strand structure was predicted with mid-disordered
confidence at position p.E7 and with low confidence at position p.R31.
This means that low disordered regions are lower in flexibility,
dynamicity and lower extension in solution and sensitive to a change.
To explain, the total disordered score of second structure changes was

Image of Fig. 3
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Fig. 4. The data provided by I-TASSER server. (A) Cartoon structuralmodels of humanHBB protein andmutant HBB. (B) Predicted secondary structure solvent accessibility and normalized
B-factor are shown. The first line indicates the sequence, second line (C: random coil; H: alpha-helix; S: beta-strand) shows the secondary structure which is determined to be helix at
positions 7 and 31with a confidence score of 9 (third line). The range of confidence is 0–9, wherein a higher score indicates a prediction with higher confidence. The solvent
accessibility of the sequence is predicted as buried amino acids which is determined to be 6 and 2 for amino acids at positions 7 and 31, respectively (range 0–9 wherein a higher
value means higher accessibility, i.e. 0—buried to 9—exposed). p.E7V and p.R31T accessibility value were 6 and 3, respectively. The accessibility of protein was changed in p.R31T
comparing to p.E7V. The predicted normalized B-factor tells about the stability of the predicted secondary structure. Negative value shows that residue is more stable in the structure.
B-factor profile (BFP) value of E7 and R31 were 0.31 and 0.87, respectively. p.E7V shows the BFP of 0.34 (N0) means less stable in experimental structure than −0.83 for p.R31T. BFP is
predicted using a combination of both template-based assignment and profile-based prediction. Based on the distributions and predictions of the BFP, residues with BFP values N2 are
less stable in experimental structures. p.R31T value was changed compared to normal amino acid sequence which defines that p.R31T is more stable in the structure than p.E7V and
this change may be more effective for this position. Threading template of the query protein was performed using LOMETS threading program. The highest significant alignment
regions of the templates are chosen with the Z-score measurement. Alignment is based on the blocks and spatial positions in the assembly. The best selected templates are chosen
from each program which is comparable with normalized Z-score. The top threading template prediction for p.R31T and p.E7V was based on PDB 1fhjB (Aquomet hemoglobin-I of the
manedwolf—Chrysocyon brachyuru—Z-score N 1 showed a good alignment (R31T: identity 0.89; normalized Z-score of the threading alignments=2.48 and coverage=0.99; p.E7V: Iden-
tity 0.89; Norm. Z-score=2.49, coverage 0.99). PDB 1v4wA the second template has higher Z-score (3.24) but has lower identity=0.47 for p.R31T. The cartoon structures of themodeled
temples are shownhere (A).Modeled templates for p.R31T had the C-score=1.25, estimated TM score=0.89±0.07 andRMSD=2.3±1.8 Å andmodel for p.E7V had C-score=1.26, C-
score is typically in the range of [−5, 2], where a C-score of higher value signifies a model with a high confidence and vice versa; C-score N−1.5 shows correct model of topology. The
estimated TM-score = 0.89 ± 0.07-A TM-score N 0.5 indicates a model of correct topology (global fold similarity) and b0.17 means random fold similarity) and root-mean-square devi-
ation (RMSD) of 2.3 ± 1.8 Å [36,122,123]. These two values indicate the similarity of the predicted structures to the native structure.
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higher in p.R31T (16%) than p.E7V (15%). R31 showed that it has a tet-
ramer interface; consequently, changes affect tetramer interference.
p.R31T is more sensitive to changes than p.E7V (Fig. 5).

3.4.3. Functional analysis
Amino acid positions 2, 3, 83, and 144 of the beta globin sequence

are binding sites of 2,3-bisphosphoglycerate, 64 and 93 are metal bind-
ing (iron), 60 and 144 are sites ofmodification (UniProtKB P68871). De-
pending on the position and kind of variant change, the structure is
disturbed and consequently affects other binding sites modifying the
function of the protein.

CombFunc analysis relating to Phyre2 server predicted the func-
tion of sequence based on gene ontology; the predicted molecular
functions are as follows: metal ion binding, hemoglobin alpha bind-
ing, oxygen transporter activity, oxygen binding, haptoglobin
binding, and peroxidase activity; similar to normal hemoglobin. The
probability of these functions slightly differed in p.E7V in comparison
to normal globin. Biological prediction showed oxygen transport and
blood coagulation as the top listed functions. ConFunc predictedmolec-
ular functions as protein binding, metal ion binding, cation binding, ion
binding, binding, substrate-specific transporter activity, oxygen trans-
porter activity, transporter activity, and, to lesser extent, haptoglobin
binding, oxidoreductase activity, acting on peroxide as acceptor, oxido-
reductase activity, antioxidant activity, peroxidase activity, catalytic ac-
tivity, hemoglobin binding, hemoglobin alpha binding, and oxygen
binding functions. These functions were predicted for p.R31T but with
lower probability, thatmeans p.R31T ismore potent than p.E7V to alter-
ation (data not shown) [35].

Another bioinformatic tool, 3DLigandSite, was used to predict bind-
ing sites at the modified positions. It seems that there is no effective

uniprotkb:P68871
Image of Fig. 4


Fig. 5. Prediction of the secondary structure based on template/homologymodeling by Phyre2 server. The first line indicates the amino acid sequence and the second line is the secondary
structure prediction which is determined as alpha helix (H) extended or B strand and coiled structure with the confidence value of low to high average (red, depicted in third line). The
fourth line calculates the structurally ordered sequence using disoPred program indicating two states of ordered and disordered. The homologymodeling of p.E7Vwas based on d2d5xb1,
members of globin-like superfamily model. A change p.E7V has 79% alpha helix structure changes with 100% confidence. The structure disorder is about 15% but at E7 change shows
average confidence. In addition, p.R31T was also modeled based on d2d5xb1model with 100% confidence and 83% identity; also, p.R31T position is disordered, which means it is not
flexible and dynamic with low value (blue). p.E7V and p.R31T are the most common missense mutations. The chemical properties of the amino acids determine the biological activity
of the protein. Valine (V), an essential amino acid, is hydrophobic (aliphatic and nonpolar) with the chemical formula [HO2CCH(NH2)CH(CH3)2]. Glutamic acid (E, formula: [C5H9NO4])
is an acidic and polar (charged) amino acid. Threonine (T, formula: [HO2CCH(NH2)CH(OH)CH3]), bearing an alcohol group, is polar amino acid. Structural view of prediction of normal,
p.E7V and p.R31T mutant protein was constructed by Phyre2 server. The cartoon format of the amino acid sequence illustrated the changes in heme binding and tetramer interference
positions. Conserved domain information gives the changes in heme binding site and tetramer interface. As the second structure is changed, the sites are changed. The predicted
binding sites (blue) and other residues (grey). Heme binding sites are: L32, F42, F43, H64, K67, V68, A71, L89, H93, L97, V99, N103, F104, L107, L142; tetramer interface: T31, V34,
V35, W38, R41, H98, D100, N103, N109, V112, C113, A116, H117, G120, F123, T124, P125, Q128, A129, Q132 in normal model which are changed with amino acid changes.
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change in binding sites when p.E7V occurs (Fig. 6). Although, if Arg at
position 31 changes to Thr there is a change in binding sites as com-
pared to normal HBB protein (Fig. 6, right columns). Binding sites are
more influenced in p.R31T than p.E7V in comparison with normal
amino acid sequence of beta globin protein (Fig. 6). No change was ob-
served in predicted binding site in p.E7V but contacts, number of con-
tacts, and the distance residues were altered in p.R31T. As change in
amino acid R31modifies heme binding site partiality at other positions.

I-TASSER predicts function using COACH server based on the predict-
ed structure. Functional homologous templates are used to determine the
ligand binding sites, enzyme commission, and gene ontology. Based on
the ligand binding site analysis, p.R31T matched to PDB 3gdjD (crystal
structure camel—Camelus dromedarius—hemoglobin) with C-score =
1.00 as hem for its binding factor. Model p.E7V functional analysis
matched PDB2h35B (solution structure of humannormal adult hemoglo-
bin)withHEC (HemeC) binding site, C-score=1.00with different ligand
binding sites. Therefore, we conclude that these two changes may influ-
ence other hem binding sites but are not directly affected sites.

Enzyme commission for R31 is low (C-score = 0.374 and TM-
score = 0.762, identity = 0.145) with oxidoreductase activity
based on PDB 1gvhA (X-ray structure of ferric Escherichia coli
flavohemoglobin reveals an unexpected geometry of the distal
heme Pockettm) with two active sites. The second comparison to
the PDB 1cqxA shows (C-score = 0.358, TM-score = 0.711 and iden-
tity= 0.144) with no active site. This shows that this protein has low
enzyme activity. Position p.E7V also has low enzyme commission
based on PDB 1gvhA (C-score= 0.378, TM-score= 0.763, identity=
0.145). Comparing the two amino acid position changes,p.R31T is
more effective in enzyme commission analysis (C-score = 0.374 is
lower than 0.378 for p.E7V).

The functional analysis is also investigated using gene ontology.
Based on gene ontology p.R31Tmatched to PDB 1dxtB with coverage=
1.00 and C-score = 0.91, TM-score = 0.9767, identity = 0.99 and the
second ranked template is PDB 1fhjB C-score = 0.77, TM-score =
0.9795, coverage = 0.99, and identity = 0.89. p.E7V based on gene on-
tologymatched to PDB 1dxtB with coverage of 1.00 and C-score= 0.91,
TM-score= 0.9813, identity 0.99; the second-ranked PDB 1a9wE (crys-
tal structure of a human embryonic Gower II carbonmonoxy hemoglo-
bin) had a C-score = 0.76 TM-score = 0.9667 coverage 0.99 and
identity 0.74, which shows that gene ontology of both amino acid
changes has not typically changed the protein functions and that alter-
ations are more damaging to the protein's quality of function and not

Image of Fig. 5


Fig. 6. Phyre2 predicting binding site submits the data to 3DLigandSite server to predict potential binding sites (cluster) in comparison to normal amino acid sequence. These tables list all
of the predicted binding-site residues with details of the number of ligands that they contact, the average distance between the residue and the residue conservation score. As illustrated
the residues' contact slightly change in p.R31T (right table) in comparison with p.E7V (left table). Number of contacts for each residue may be changed; the average distance from
conservation score of each residue (range: 0–1.00) is defined for each residue. The color shows the binding site range. Low-distance shows high accuracy and lower coverage and as
the distance increases the accuracy lowers while the coverage increases. Themaximum range is 0.68 is obtained at a 0.8 A° distance. The correlation decreases at lower and higher cut offs.
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the ontology. Additionally, in vitro analysis is needed to investigate the
function of eachmutation but in silico analysis would reveal a fast func-
tional analysis of the new variants.

3.4.4. Interactome analysis
STRING v10.0 server was used to investigate the interaction of HBB

with other genes in network system. Though a change in other genes as-
sociatedwithin a networkmay cause phenotypic variability in the func-
tion of the HBB protein or vice versa. The following proteins were
predicted to interact somehow with HBB as follows: HBA1
(hemoglobinA1), HBA2 (hemoglobin alpha2), AHSP (alpha hemoglobin
stabilizing protein), KLF1 (Kruppel-like factor 1 (erythroid)), HP (hap-
toglobin), HBZ (hemoglobin zeta), HBG2 (hemoglobin, gamma G),
NFE2 (nuclear factor (erythroid-derived 2)), AQP1 (aquaporin 1 (Colton
blood group)), and HPX (hemopexin) (Fig. 7). A change in B globin
structure modifies the function of its protein; therefore, its interaction
with other proteins may evolve the phenotype. B globin with unusual
or truncated structure lessens the tetramer formation and alters the bi-
ological functions of hemoglobin.
3.4.5. Pathogenic analysis of causal variants
Depending on the type of mutation, the probability of pathogenicity

of variants was determined using different bioinformatics online
software.
3.4.5.1. Missense, nonsense, and indel mutations. In this study, SIFT (≤0.05
pathogen) and PolyPhen2 (0.5–1.5 possibly/probably damaging) were
calculated for the p.E7V (cd 6 A N T), and p.R31T (cd30G N C). The
p.R31T was damaging by both tools, though p.E7V was benign by
polyphen2. SNAP value was exemplified as non-neutral for p.R31T.
This suggested that the p.R31T could be deleterious but p.E7V is neutral.
Also, SNP&Go predicted the pathogenicity of the p.R31T as diseased
with a reliability index of 7 (unreliable, 0–reliable, 10). Pathogenic an-
notation of amino acid change p.R31T was predicted to be deleterious
by all software tools (Table 3A); but the pathogenicity of the p.E7V
was predicted just by SIFT, Variation Viewer and MutPred. CADD,
MutationTester, and Variation Viewer showed the pathogenic effect of
p.R31T mutation (Table 3A). CADD indicates that p.R31T is more

Image of Fig. 6


Fig. 7. Protein–protein interaction network of HBB. This protein has a crucial role in oxygen
transport from the lung to the various peripheral tissues. HBA1: hemoglobin alpha1;
HBG2: hemoglobin, gamma G; NFE2: nuclear factor (erythroid-derived 2); AQP1:
aquaporin 1 (Colton blood group); HBA2: hemoglobin alpha2; AHSP: alpha hemoglobin
stabilizing protein; KLF1: Kruppel-like factor 1 (erythroid); HP: haptoglobin; HPX:
hemopexin; HBZ: hemoglobin zeta. This figure was generated by STRING (V10.0).
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deleterious than p.E7V but with a lower scaled score compared to other
SNVs in thehumangenome indicating a rare variant at the top end list of
all SNVs (Table 3A).

In addition, the pathogenicity and diseased effect of frameshift mu-
tations were predicted by CADD and MutationTaster, and confirmed in
Variation Viewer (Table 3B). All frameshift mutations led to premature
protein. Obviously,W16X andQ40X generate stop codonswhich lead to
a truncated protein.

3.4.5.2. Regulatory and intronic mutations. The pathogenic effect of regu-
latory and intronic mutations was predicted by HSF, Mutation Taster,
Variation Viewer, and CADD. To exemplify, in silico analysis of all the
intronic changes were predicted to create new sites or disrupt the
sites as ESE, ESS, intron-identifying elements (IIE), enhancer, and silenc-
er, which affect the splicing process (Table 3C).

Mutation Taster and Variation Viewer showed the pathogenic effect
of the mutations except for the regulatory regions that could not be an-
alyzed by MutationTaster (Table 3C). CADD also reveals a high Phred
score for intronic positions but lower than the score of the exonic and
frameshift changes. As a matter of fact, the calculated C-scoreof CADD
shows that these SNVs are among the top deleterious mutations
(Table 3C, PHRED score). CADD has the ability to evaluate the small in-
sertions, deletions, and regulatory variants throughout the genome as
displayed in Table 3C.

4. Discussion

For simplicity, better understanding, and analysis, we have classified
the studies into populations and subpopulations. Iran, in the center of
the Middle East, is positioned on the ancient Silk Road and has acted
as a bridge or meeting place between the Eastern andWestern civiliza-
tions. The existence of various ethnicities with different cultures, inva-
sions, and historical wars as well as being bordered by more than ten
countries are factors responsible for mutation heterogeneity of beta
thalassemia and other diseases [124–128]. Nevertheless, specific cus-
toms and traditions within some ethnicities such as intragroup mar-
riages could decrease the heterogeneity of the mutations. A total of

Image of Fig. 7


Table 3B
Pathogenicity of nonsense and frameshift mutations of HBB gene by CADD, MutationTaster, and Variation Viewer. Clinical presentation of the mutations in heterozygous form is also
shown.

Mutation HGVS nomenclature dbSNP Type CADD Mutation Taster prediction Variation
Viewer

Hematology and
clinical presentation
(heter)

Raw score PHRED

Cd36/37(−T) c.112delT rs63750532 B0 5.080768 31 Disease causing (W38GfsX24) Pathogenic
Fsc 8/9 c.27-28insG rs35699606 B0 1.135077 9.626 Disease causing (S10VfsX14) Pathogenic Hb A2 5.9%

MCH 20.5 pg
MCV 64 fL

Fsc8 (−AA) c.25-26delAA rs35497102 B0 2.205739 13.33 Disease causing (K9VfsX14) Pathogenic Hb A2 4.1–5.1%
MCH 16.3–18.8 pg
MCV 68–74 fL

FSC44(−C) c.135delC rs80356820 B0 4.806348 27.2 Disease causing (F46LfsX16) Pathogenic
Codon39 (C N T) c.118C N T rs11549407 B0 3.365565 17.34 Disease causing (Q40X) Pathogenic Hb A2 4.35–5.35%

MCH 19.1–21.3 pg
MCV 64.1–81.1 fL

CD5(−CT) c.17-18delCT rs34889882 B0 1.583009 11.25 Disease causing (P6RfsX17) Pathogenic Hb A2 5.2–5.5%
MCH 18.8–20.7 pg
MCV 68–81 fL

Cd15 (G N A) (TGG-TGA) c.48G N A rs34716011 B0 4.784389 26.9 Disease causing (W16X) ND Hb A2 5.1%);
MCH 21 pg
MCV 66.5 fL

FSC-22-24 (−AAGTTGG) c.68-74delAAGTTGG rs281864898 B0 5.041626 29.9 Disease causing (E23VfsX37) ND
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14,293 affected carriers and their families were investigated in Iran.
Also, a total of 16,583 cases were studied from neighboring countries
of Iran. Over the past decades, several studies have been performed on
B thalassemia patients and all the reported mutations were included
in this cohort.

HBB genemutations arise from different functional mutations of the
gene. Of these, we investigated the 20 most frequently reported muta-
tions. This study provides a large number of beta thalassemia patients
in the region with complete evaluation of pathogenic variations and
their correlation to phenotypes (Fig. 1). The clinical evaluation was
assigned by clinical presentation, hematological analysis, familial stud-
ies, globin chain synthesis ratios, and physicians' confirmations.
Table 3C
The bioinformatic analyses of the pathogenicity of regulatory, splicing, and intronic mutations

Mutation HGVS
nomenclature

dbSNP Type CADD HSF

Raw score PHRED

IVSI-5(G N C) c.92 + 5G N C rs33915217 B+ 0.62489 7.361 IIEs
Silen

IVS II-1 (G N A) c.315 + 1G N A rs33945777 β0 2.32385 13.73 IIEs,
ESS

IVS I-110(G N A) c.93-21G N A rs35004220 B+ 0.327489 5.776 IIEs,
enh
hnR

IVS I-1 (G N A) c.92 + 1G N A rs33971440 β0 4.161918 21.5 ESS
IIEs

IVSI −25 bp c.93-21_96del rs63750223 B0 2.407984 14.01

IVS I-6 (T N C) c.92 + 6 T N C rs35724775 B+ 1.033218 9.22 ESE
IIEs

IVS-I-5 (G N A) c.92 + 5G N A rs33915217 B+ 0.62489 7.361 ESE
ESS

IVS-II-745, G N C c.316-106C N G rs34690599 B+ −0.445053 1.935 IIEs
hnR
new

−88 (C N A) c.-138C N A rs33944208 β+ 0.820753 8.305
−28 A N C c.-78 A N C rs33931746 β+ 4.316974 22.6

Exonic splicing enhancers (ESEs); exonic splicing silencers (ESSs); intronic splicing enhancers
In HSF server, the exonic splicing enhancers (ESEs) are specific short nucleotide sequences tar
exons and decoy splice sites using exonic splicing silencers (ESSs). ESSs provide binding sites fo
(ISEs) and intronic splicing silencers (ISSs) are also intronic cis-elements playing similar roles
Mutation diversity in Iranian cohorts of border regions is similar to
neighboring countries of that area, suggesting historical immigration
and emigration of these populations. Overall, the ranking of mutations
in subpopulations are similar in the neighboring countries as shown
(Fig. 2) in Turkey, Iraq, Oman, and other countries.

Different pathogenic HBB variations and their frequencies were
gathered. This kind of data is valuable for the analysis of heterogenous
and homogenous populations and subpopulations and their compari-
son. The other reason is that this data may be used as a panel of muta-
tions for this region of the world to choose the most cost-effective
strategy for screening patients. The prevalent form of thalassemia
with a given genotype could help health providers and physicians in
of HBB gene. Clinical presentation of the mutations in heterozygous form is also shown.

Mutation Taster
prediction

Variation
Viewer

Hematology and clinical
presentation

and ESS site broken
cer motif new site

Disease causing Pathogenic Hb A 5%–8%

and ESE new site
and Silencer Site broken

Disease causing Pathogenic Hb A2 4.2%–5.6%
MCH 18.5–22.1
MCV 63.4–80.4 fL

ESE, silencer and
ancer site broken
NP protein new site

Disease causing Pathogenic

and ESE site broken
and silencer new site

Disease causing Pathogenic Hb A2 4.75%–5.55%
MCH 18.7–20.5 pg
MCV 62.1–77.9 fL

ND Hb A2 5.2%
MCH 19.5 pg
MCV 74.5 fL

and enhancer new site
site broken

Disease causing Pathogenic Hb A2 3.35%–4.45%
MCH 20.6–24 pg
MCV 64.7–77.3 fL

new site
site broken

Disease causing Pathogenic Hb A2 2%–5%
MCH 20–22 pg
MCV 71–79 fL (homo)

and ESE site broken
NP protein and silencer
site

Disease causing Pathogenic Hb A2 4.4%–5.4%
MCH 19.1–21.7 pg
MCV 64.9–76.5 fL

Pathogenic
Pathogenic

(ISEs); intronic splicing silencers (ISSs); intronic identifying elements (IIE).
geted usually by serine/arginine-rich (SR) proteins. The spliceosome can ignore pseudo-
r proteins promoting exon exclusion (mainly hnRNP proteins). Intronic splicing enhancers
of ESEs and ESSs.
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building a framework for the country. This will assist in premarital and
carrier counseling.

It seems that there may be some bias due to incomplete analysis
of some reports; this may be due to methodology used in each
study. Most studies used ARMS-PCR and RFLPs for specific analysis
of patients and other mutations could have been missed though se-
quencing and complete analysis of the gene in some studies were
needed for complete evaluation. Complete Sanger sequencing of
the gene is helpful for phenotype genotype analysis of patients. The
critical distinction between our data and neighboring studies may
be due to subpopulational analysis and detailed survey of the affect-
ed individuals.

The clinical significance of mutations with a given phenotype was
explored to compare the variability of the reported data. One of the
common mutation is IVSI-5(G N C) [HBB:c.92 + 5G N C], located at the
5′ spice site and because of the high degree of conservation of the sur-
rounding region, +5G N C leads to the abolition of mRNA splicing and
is clinically important [129]. This mutation is the most common in the
eastern part of Iran (Fig. 2), accounting for 76.1% of mutations. IVSI-
5(G N C) is also the most common mutation in Pakistan (N38%), Oman
(N44%), UAE (N56%), and Qatar (N35%) (Table 2; Fig. 2) [109,111,
113–118,130]. Sinha et al. studied 8505 alleles from India and they
found that a total of 52 mutations account for 97.5% of all beta-
thalassemia alleles and IVSI-5(G N C) is themost commonmutation (re-
sponsible for 54.7% of mutations) [131]. The frequency of this mutation
is low inwestern Iran. In Turkey and Iraq, its prevalence is decreased by
less than 1% and 5%, respectively [92,93,97,100,132]. Its distribution,
thus, shows an east-to-west gradient. Also, the southern part of Iran
has a high frequency of this allele, which may be due to migrations
from Persian Gulf countries. The origin of the mutation is probably
one of these neighboring countries and then distributed to others dur-
ing migration; several studies have described high frequency (58%–
72%) of the mutation in southern and eastern India, suggesting its an-
cient origin from these regions [133]. One study on UAE haplotypes
showed an independent origin of this mutation from this population
[134]. Iran's eastern border with Pakistan through land and with
Oman through the sea; Sistan va baloochestan of Iran and Khorasan is
bordered by Pakistan and Afghanistan. Thismutation probably occurred
for the first time in one of these countries and then spread to others.
After that, intramarriages, genetic drift, and other phenomena may af-
fect it so that its frequency has been increased. One important point is
that this migration has been done through southeastern Iran. Further-
more, up to now, no study has been published about the HBBmutations
in Afghanistan, our study suggests that the type and frequency of HBB
mutation in this country might be similar to those mutations observed
in northeastern Iran. A total of 4094 carriers had minor phenotypes
though 403 alleles were found in major/intermedia patients. It causes
B+ (reduced protein synthesis) thalassemia.

IVS II-1 (G N A) [HBB:c.315+ 1G N A] as betamutation abolishes the
5′ splicing site. When homozygous, it causes transfusion dependent
beta-thalassemia major and in heterozygous form changes hematologi-
cal factors are as follow Hb 10.95 ± 1.65; MCV 71.9 ± 8.5 fL; MCH
20.3 ± 1.8; Hb A2 4.9 ± 0.7%; Hb F 5.75 ± 4.55% [135]. Our study
shows that this mutation has the highest frequency (57.44%) in north-
ern Iran (Table 1, Fig. 2) [71]. The frequency of themutation is decreased
from north to the south of Iran [71,85,136]. It also has high frequency in
the west and southwest of Iran whereas it decreases to the east. The
lowest frequency (2.54%) is observed in the eastern region, but the low-
est frequency (6%) of IVSII-1 has been reported in Kerman Province
(southern region) [61]. A total of 1186 alleles of homozygous (major)
group had IVSII-1(G N A). IVS II-1 (G N A) is themost commonmutation
in Iraq and Kuwait and is relatively high in Azerbaijan. It seems that this
mutationmay have arisen fromnorthern Iran thenmoved to other pop-
ulations. This mutation is observed in some small countries like Kuwait
[102,103]with high prevalence;most likely intramarriage in addition to
effects of genetic drifts lead to the high prevalence of the mutation.
Further studies are required to determine the ancient origin of IVS II-1
(G N A) and an accurate estimate of the time when it arose.

IVS-I-110 (G N A) as a beta+ mutation and one of themost common
mutations in Mediterranean countries, occurred in 21 nucleotides 5′ to
the acceptor splice site (AG…GC); it produced a new splice site resulting
in an 80% abnormal spliced mRNA and 20% normal mRNA [135,137,
138]. When homozygous, it leads to almost invariably transfusion-
dependent beta-thalassemia major and, if heterozygous, hematological
factors are as follows: Hb 11.85 ± 1.8 g/dl; MCV 69.5 ± 6.9 fL; MCH
20.9 ± 2.0 fL; Hb A2 4.65 ± 0.5%; Hb F 1.2 ± 1.15% [139]. IVS-I-110
(G N A) is the most common mutation in Cyprus, Turkey, Greece, and
Albania [92–94,96,135,139–143]. Zahed et al. studied this mutation in
Lebanese subjects and concluded that IVS-I-110 (G N A), following its
emergence in Turkey, was probably later introduced into Lebanon by
migration or settlements [31]. This mutation shows a high frequency
in northwestern Iran in the vicinity of Turkey and Azerbaijan, suggest-
ing population immigrations among these populations during old
times. It seems therefore that this mutation flowed to central parts of
Iran with the migration of peoples.

Each of the Cd36/37(−T) and Fsc 8/9mutations with a frequency of
about 5% are the next commonest mutations in Iran. Cd36/37(−T) is
more frequent in the southwest (15.7%) andwest (8.3%) of the country.
While the presumed origin of Cd36/37(−T) mutation is from Kurdish
population, the mutation showing an east-to-west gradient is the
most common mutation in Khozestan and Lorestan provinces [80,85]
but is less common in east Iran [66]. If so, consequences of gene flow
and genetic driftmay increase its frequency in subpopulations of the lat-
ter provinces. FSC 8/9 [HBB:c.27_28insG] mutation is distributed in dif-
ferent parts of Iran, with a high frequency in the northwest andwestern
regions, 21.23% and 14.3%, respectively (Table 2) [73,74,77,78]. FSC 8/9
is one of three common mutations in Pakistan and India [130,144]. It is
also high in UAE and Qatar; that may be a gene flow from the south and
southeast to the northwest regions of Iran.

The following mutations have been reported in all areas: IVSI-1
(G N A), IVSI-5 (G N C), IVSI-25 bp, IVS I-6(T N C), IVS I-110(G N A), IVS
II-1(G N A), IVS II-745(G- N C), FSC5(−CT), FSC8(−AA), FSC8/9(+G),
CD15(G N A)(TGG-TGA), FSC36/37(−T), and FSC44(−C). The frequen-
cy of some of them, including FSC8/9(+G), FSC44 (−C), and IVSI-
1(G N A), has a usually constant rate among different populations;
these points might be considered as hotspots.

CD6 [HBB:c.20 A N T] mutation lead to E7 amino acid substitution
with valine (p.E7V); HbS occurs at a high frequency in different areas
such as sub-Saharan Africa, parts of theMediterranean region, the Mid-
dle East, and certain regions of India. It has very low frequency (0.5%) in
Iranian populations but is high (25%) in Oman. CD30 [HBB:c.92G N C] or
p.R31T, CD15G N A or c.48G N A, and CD40C N T or c.118C N T (nonsense)
mutations are very rare in Iran and neighboring countries.

Our goal is to improve management and counseling of families. To
achieve this, we need to evaluate the clinical status of affected individ-
uals and correlate this with their genotype to build a comprehensive
knowledge base in the relevant communities of Iran and the Middle
East.

4.1. Clinical presentations of common mutations

The beta+ and beta0mutations lead to the reduced or absent synthe-
sis of the beta chain, respectively. Impaired B-globin synthesis leads to
imbalanced proportion of beta and alpha globin chainswhich the excess
of a-chain aggregates in RBC precursors, and causes abnormal cell mat-
uration and their premature destruction in the bone marrow. Anemia
thus occurs as a definitive consequences of this abnormal process
which leads to splenomegaly, bone disease, and endocrine and cardiac
implications. Based on the severity and the mutation type, beta thalas-
semia generallymay be observed in oneof three clinical and hematolog-
ical forms including the beta-thalassemia carrier state (trait or minor or
heterozygote), thalassemia intermedia, and thalassemiamajor (a severe
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transfusion-dependent anemia) [145]. Heterozygotes are clinically
asymptomatic and have specific hematological features (92%–95%
HbA; N3.8 HbA2; and variable amounts of HbF (0.5%–4%)). Thalassemia
intermedia is categorized as a clinically and genotypically heteroge-
neous group of thalassemia, ranging from the asymptomatic carrier
state to the severe transfusion-dependent type; it is due to the
coinheritance of homozygosity or compound heterozygosity for mild
beta-thalassemia alleles. The rate of imbalance between the globin
chains determines the clinical severity of beta-thalassemia.

RBC indices in normal individuals are MCV (male: 89.1 ± 5.01, fe-
male: 87.6 ± 5.5 fL), MCH (male: 30.9 ± 1.9, female: 30.2 ± 2.1 pg)
and Hb (male: 15.9 ± 1.0, female: 14.0 ± 0.9 g/dL). The quantities of
these indices are changed in beta-thalassemia as follows: MCV (50–
70 fL for major and b79 fL for carrier state), MCH (12-20 pg for major
and b27 for minor) and Hb (b7 g/dL for major and 9.1–15.3 for minor).

All common nonsense and frameshift mutations of the HBB gene are
categorized as B0 type. More severe clinical and hematological conse-
quences are expected to be observed in individuals carrying these mu-
tations. Hematological and RBC indices in heterozygotes of these
mutations are Hb A2 = 4.1–5.9%, MCH = 16.3–21.3 pg, and MCV =
64–81 fL.

Depending on the severity of intronic mutation, these indices may
show variable quantities. Analysis by MutationTaster2 predicted that
the common intronic mutations are disease causing [47]. IVS II-1
(G N A), IVS I-1 (G N A), and IVS I-25 bp are B0 typemutations and affect
these variablesmore than other intronic mutations. IVS I-25 bp disrupts
RNA processing and in turn leads to a clinical phenotype [146]. CADD
values for these positions show higher Phred scores (N10) (Table 3C).

Direct genotype–phenotype correlation of the available data (RBC
indices and hemoglobin patterns) for the selected 20 mutations came
to the close relation to the phenotype of major and minors; there was
some difficulty with intermedia individuals which were not specified
in different studies for detailed analysis.

Genotype–phenotype analysis expands our knowledge in predicting
phenotypic traits and to investigate important genetic effects of the her-
itability of a trait. However, the pathogenicity of the traits remains un-
explained due to the single focus of the study designs. A system
biology approach would model based on different levels of genetic, ge-
nomic, proteomic, transcriptome,methylomic, andmetalobomic data to
underpin the phenotype [147,148].

Genotypes and phenotypes were not specifically distinguished in
each study and therefore it was difficult to conclude the genotype corre-
lation in all studies. Also, we suggest that in research programs for pa-
tients in whom there is a discordance of phenotypes and genotypes,
theremay be benefit of whole exome sequencing to enroll the genes in-
volved. Since theremay be other effective genesmodifiers, etc., for caus-
ing disease with different severity.

4.2. In silico analyses

With advances in sequencing technology and improvement of vari-
ant calling, it is very difficult to deal with structural and functional anal-
ysis in parallel. With more than 800 mutations for the HBB gene, the
biochemical analysis of all these mutations is demanding; however,
not all of them have been characterized and the clinical consequences
remain unsolved. In silico analysis made it straightforward [149]. Muta-
tions that disrupt oxygen transport activity, heme binding, hemoglobin
binding, iron–iron binding, and oxygen binding sites cause loss of func-
tion of globin and subsequently hemoglobin protein. Mutations causing
leaky amounts of beta globin production cause minor or B+ type effect.

The secondary structure of B globin protein is helix with main mo-
lecular heme, hemoglobin, iron, oxygen binding sites, and oxygen trans-
porter activity. This protein functions in tetramer. Any variant in the
gene sequence may affect the amino acid sequence, expression, and af-
fect protein function. The stability may be changed due to conforma-
tional and folding positions at mRNA and consequently at protein
level. The structural studies, at the DNA level, were investigated for mis-
sense mutations by I-TASSER and Phyre2. The servers could be used for
the prediction of amino acid changes in the protein as it specifies resid-
ual amino acid changes. The predicted structural data could help practi-
tioners and geneticists to assign phenotypes to novel variants.

We document structural and pathogenic aberrations computational-
ly in previously characterized and uncharacterized mutations on the
basis of changes that each brings to the protein to evaluate the confi-
dence of these tools on the novel mutations. Our data demonstrates
that we could predict the pathogenicity of a variant in coding regions
based on structural changes. Prediction of protein stability changes
upon single point mutations was investigated throughout structural
and functional analysis of p.R31T and p.E7V. The frameshift mutations
led to premature protein termination with no function, predicted by
CADD and MutationTaster, and confirmed with the phenotypic conse-
quences at Variation Viewer. The native and altered globin amino acid
sequences were used to determine the secondary structures to con-
struct models. The solvent accessibility was determined to investigate
the protein stability. The dynamic models were compared before and
after mutation to evaluate the altered and native protein models. The
consequences of these structural alterations were explored in the func-
tion of protein for biological functions (COACH), ligand binding sites,
enzyme activity, gene ontology, and binding sites to evaluate the chang-
es. In fact, slight changes were based on gene ontology with missense
mutations which could not be directly reliable. The functional study in
this investigation may be a good model for additional future studies.

Generally, point mutations affecting the b-globin transcription (e.g.
promoter and 5′UTR mutations) are mild beta+ mutations and were
analyzed with bioinformatic software to calculate the risk of pathoge-
nicity. Those affecting splicing process including splice junctions,
polyadenylation, consensus sequences, and other 3′UTR mutations
cause both silent and beta+mutations. Mutations in the coding regions
harbor nonsense, frameshift, and initiation codon cause mild or B0 mu-
tations. Mostly, deletion, insertion, initiation codon, frameshift, and
splicing junction mutations cause B0 mutations. Interestingly, frame-
shift and intronic mutations have higher frequencies than other func-
tional mutations in this cohort, respectively.

We found that the predictability of in silico analysis for amino acid
substitutions was easier to investigate than the intronic and noncoding
variants since more software were available. The predication of patho-
genicity of intronic sites leads to detailed investigation regarding the
phenotypic diversity in beta thalassemia. Data analysis by mutation
taster and CADD could demonstrate the pathogenicity of the variants.
CADD andMutationTaster showed a high confidence value for the prob-
ability to predict the extent of pathogenic effect of unknown intronic
variants. However, CADD could define the SNV in the regulatory and
downstream gene alterations. Introns (intervening sequences, IVS) are
removed during the process of RNA splicing. Splice sites located at the
5′ and 3′ ends of introns and branch site partly define the specificity of
splicing. ESSs, ESEs, and cis-regulatory elements regulate the use of
adjacent splice sites. These elements recruit protein factors such as the
serine/arginine-rich (SR) protein family interacting favorably or unfa-
vorably with components of the core splicingmachinery [150]. Any nu-
cleotide change in these sequences, therefore, may affect the efficiency
of RNA processing. Bioinformatic analyses showed that the given
intronic mutations of HBB gene are harmful and pathogenic sequences
or create such a sequence (HSF in Table 3C). IVSI-25 bp is a 25-
nucleotide deletion involving the IVS-1 acceptor splice site; it disrupts
processing of RNA sequences and leads to the formation of low levels
of RNA containing an intact IVS-1 [146].

A simple in silico evaluation of uncharacterized gene mutations
could thus potentially help predict the pathogenicity of a variant. This
makes it easier and faster to predict the effect of new and novel variants
and could inform the families at risk of beta thalassemia. Our data sug-
gests that the mutations in the noncoding regions of HBB gene may be
responsible for some of the phenotypes which could be scrutinized
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with bioinformatic servers (Table 3C). Likewise, the mutations not re-
ported in SNP database should be investigated if found in thalassemic
individuals. However, this prediction should be confirmed by segrega-
tion or expression analysis. Identification of the pathogenic mutations
allows confirmation of a defect in individuals and genetic testing and
counseling of other high-risk familymembers. Also, finding a pathogen-
ic variant in a populationmakes it easier to relate themutation in others
clinically affected with variable phenotypic expression. Of course, it is
notable that there is a wide diversity of the phenotypic presentation
and exact prediction of phenotype with such analysis may not be effec-
tive. Though we could only predict the pathogenicity of the mutations
with in silico analysis.

4.3. Interactome network of proteins

A wide phenotypic diversity has been observed even among indi-
viduals with the same beta-thalassemia genotype. Modifier variants
modulate andmodify the clinical phenotype. There are a cluster of β-
chain variants of hemoglobin at themouse β-globin region; this clus-
ter is developmentally regulated by multiple elements spanning a
region of 100 kb including the locus control region (LCR). LCR acts
as a super enhancer during the different ontological periods.
Furthermore, specific transcription factors including erythroid tran-
scription factor (GATA1) and Kruppel-like factor 1 (KLF1) are needed
for the expression of HBB gene. An extensive transcription interac-
tome exists in erythroid cells. As the interactome analysis showed,
the interaction is seen in ten proteins including HBA1 and HBA2,
which are mainly involved in oxygen transport [38]. AHSP protein
as a chaperone prevents the damaging aggregation of alpha-
hemoglobin during normal erythroid cell development. It specifical-
ly protects free alpha-hemoglobin from precipitation [151]. The KLF1
mediates preferential aggregation of its own regulated genes by
binding to enhancer and promoter elements [152]. Notably, a change
in the beta globin would have diverse effects on the interacted pro-
tein and factors, i.e. transcription, translation, and development
and function of hemoglobin and consequently the phenotype.

5. Conclusion

In particular, we have analyzed all reported mutations defined in
this region of the world that have high incidence. This is valuable for
the analysis of panel-based studies in the region that may have no ac-
cess to advanced genetic technologies. To identify a specific panel of
the most frequent mutations, such investigations are needed. Difficulty
of defining the clinical significance of a newmutation is also important.
Comparison of the previously defined pathogenic value could increase
our dependence on different servers to define the pathogenicity for in-
terim reporting and decision making for family members. This article
will be of special interest for performing a prenatal diagnosis of beta
thalassemia. It is used to identify the fetal phenotype butwill not predict
it's phenotypewith high accuracy for unknown variants. In case of novel
variants, computational analysis could be used in addition to segrega-
tion and expression analysis to assess the extent of pathogenicity of
the variant. The software could be used to predict the phenotype but
for prenatal diagnosis, careful analysis is necessary for at-risk patients.
Thosemutationswith known functional consequences and clinical phe-
notype give high confidence for genetic counseling of at-risk families to
know the probability of the affected child. The families have the right to
undergo different decisions, e.g. termination, treatment of patients, or
preimplantation genetic diagnosis (PGD).

5.1. Practice points

• Genetic screening tests for common mutations in the region
• The use of bioinformatic tools for assessment of pathogenicity
5.2. Research agenda

• Regional distribution of HBB mutations
• Frequency of HBB gene mutations
• In silico analysis of HBB common mutations
• Efficacy and reliability of bioinformatic software for fast analysis of the
pathogenicity
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